Abstract
Background and AimsStearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. MethodsTo interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine- specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, metabolic phenotyping including body composition, indirect calorimetry, glucose tolerance analyses, quantification of the composition of the gut microbiome, and assessment of bile acid signaling pathways. ResultsIKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt. In addition, the alpha and beta diversity of the gut microbiome was reduced in iKO mice, with several alterations in microbe species being associated with the observed increases in plasma bile acids. These increases in plasma bile acids were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. ConclusionOur results indicate that deletion of intestinal SCD1 has significant impacts on bile acid homeostasis and whole-body energy balance, likely via activation of TGR5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cellular and Molecular Gastroenterology and Hepatology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.