Abstract
Purpose Adaptive growth of the intestinal mucosa in response to massive gut loss is fundamental for autonomy from parenteral nutrition. Although angiogenesis is essential for cellular proliferation in other tissues, its relevance to intestinal adaptation is unknown. We tested the hypothesis that resection-induced adaptation is associated with new blood vessel growth. Methods Male C57Bl/6 mice underwent either a 50% small bowel resection or a sham (transection and reanastomosis) operation. After 1, 3, or 7 days, capillary density within the intestinal villi was measured using confocal microscopy. A messenger RNA reverse-transcriptase polymerase chain reaction (RT-PCR) array was used to determine angiogenic gene expression during adaptation. Results Mice that underwent small bowel resection had a significantly increased capillary density compared to sham-operated mice at postoperative day 7. This morphological alteration was preceded by significant alterations in 5 candidate genes at postoperative day 3. Conclusion New vessel blood growth is observed in the adapting intestine after massive small bowel loss. This response appears to follow rather than initiate the adaptive alterations in mucosal morphology that are characteristic of adaptation. A better understanding of this progress and the signaling factors involved may improve therapeutic options for children with short gut syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.