Abstract

BackgroundCancer results from the accumulation of mutations leading to the acquisition of cancer promoting characteristics such as increased proliferation and resistance to cell death. In colorectal cancer, an early mutation leading to such features usually occurs in the APC or CTNNB1 genes, thereby activating Wnt signalling. However, substantial phenotypic differences between cancers originating within the same organ, such as molecular subtypes, are not fully reflected by differences in mutations. Indeed, the phenotype seems to result from a complex interplay between the cell-intrinsic features and the acquired mutations, which is difficult to disentangle when established tumours are studied.MethodsWe use a 3D in vitro organoid model to study the early phase of colorectal cancer development. From three different murine intestinal locations we grow organoids. These are transformed to resemble adenomas after Wnt activation through lentiviral transduction with a stable form of β-Catenin. The gene expression before and after Wnt activation is compared within each intestinal origin and across the three locations using RNA sequencing. To validate and generalize our findings, we use gene expression data from patients.ResultsIn reaction to Wnt activation we observe downregulation of location specific genes and differentiation markers. A similar effect is seen in patient data, where genes with significant differential expression between the normal left and right colon are downregulated in the cancer samples. Furthermore, the signature of Wnt target genes differs between the three intestinal locations in the organoids. The location specific Wnt signatures are dominated by genes which have been lowly expressed in the tissue of origin, and are the targets of transcription factors that are activated following enhanced Wnt signalling.ConclusionWe observed that the region-specific cell identity has a substantial effect on the reaction to Wnt activation in a simple intestinal adenoma model. These findings provide a way forward in resolving the distinct biology between left- and right-sided human colon cancers with potential clinical relevance.

Highlights

  • Cancer results from the accumulation of mutations leading to the acquisition of cancer promoting characteristics such as increased proliferation and resistance to cell death

  • Intestinal epithelial organoid cultures were established from three distinct regions of the murine intestine: proximal small intestine, distal small intestine, and colon

  • We employed a gene set enrichment analysis (GSEA) to identify gene expression profiles that are significantly altered following Wnt signalling activation compared to the wt organoids (Fig. 1g)

Read more

Summary

Introduction

Cancer results from the accumulation of mutations leading to the acquisition of cancer promoting characteristics such as increased proliferation and resistance to cell death. An early mutation lead‐ ing to such features usually occurs in the APC or CTNNB1 genes, thereby activating Wnt signalling. In absence of Wnt ligands, the β-Catenin destruction complex, comprising of APC, Axin and GSK3β, phosphorylates β-Catenin to initiate ubiquitin-dependent degradation [13, 14]. Stabilization of β-Catenin can be achieved directly by mutation of phosphorylation sites in β-Catenin [15] or indirectly by inactivation of the destruction complex (mostly through APC inactivating mutations). Both mechanisms are found to increase Wnt signalling in early carcinogenesis in the intestine

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call