Abstract

The initial rates of phosphate accumulation by isolated chick intestinal epithelial cells have been examined. At high concentrations of phosphate (1.5 mM), phosphate uptake is relatively independent of sodium and demonstrates a pH optimum of 8.0. At pH 8.0, 56% of the uptake is dependent on the presence of Ca in the uptake medium compared to 28% at pH 6.8. Membranes prepared from these same intestinal epithelial cells contain a Ca-dependent phosphatase that can be distinguished from the more abundant Mg-dependent alkaline phosphatase. The Ca-dependent phosphatase has a pH optimum between 8.5 and 9.0 and, compared to the Mg-dependent activity, is more readily inactivated at 58 degrees C and is relatively resistant to L-phenylalanine inhibition but more sensitive to ethane-1-hydroxy-1,1-diphosphonate (EHDP). Both activities are distributed in a constant proportion between the brush border and basal lateral membranes and at various segments along the intestine. Vitamin D in vivo and 25-hydroxyvitamin D [25(OH)D] in vitro stimulated both activities. In vitro, utilizing the isolated intestinal cells, the stimulation of phosphate uptake paralleled the increase in Ca-dependent alkaline phosphatase activity. The role of alkaline phosphatase in intestinal phosphate transport is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.