Abstract
Microplastic particles are ubiquitous in the environment. However, little is known about their uptake and effects in humans or mammalian model organisms. Here, we studied the effects of pristine polyamide (15–20 µm) and polyethylene (40–48 µm) particles after oral ingestion in rats. The animals received feed containing microplastic particles (0.1% polyamide or polyethylene, or a mixture of both polymers) or a control diet without microplastic particles, for 5 weeks. The permeability of the duodenum was investigated in an Ussing chamber, whereas gene expression and concentration of tight junction proteins were measured in gut tissue and plasma. Microplastic particles were quantified by pyrolysis-gas chromatography/mass spectrometry in rats’ feces. Rats fed with microplastic particles had higher duodenal permeability. Expression of gene coding for the tight junction protein occludin (OCLN) was higher in PE treated animals compared to control or the PA group. No changes in the expression of the gene coding for zonula occludens protein 1 were detected. Occludin protein concentrations were below the limit of detection of the applied method in both gut and plasma. Zonula occludens protein 1 concentrations in the gut were significantly higher in groups exposed to PA and PE as compared to control, while zonula occludens protein 1 concentrations in plasma did not show significant changes. These results demonstrated that short-term exposure to a dose of 0.1% (w/w) microplastic particles in feed had limited effects on duodenal permeability, expression of pro-inflammatory protein genes and tight junction protein genes in the duodenum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.