Abstract

Intestinal microbe-host interactions can affect the feed efficiency (FE) of chickens. As inconsistent findings for FE-associated bacterial taxa were reported across studies, the present objective was to identify whether bacterial profiles and predicted metabolic functions that were associated with residual feed intake (RFI) and performance traits in female and male chickens were consistent across two different geographical locations. At six weeks of life, the microbiota in ileal, cecal and fecal samples of low (n = 34) and high (n = 35) RFI chickens were investigated by sequencing the V3-5 region of the 16S rRNA gene. Location-associated differences in α-diversity and relative abundances of several phyla and genera were detected. RFI-associated bacterial abundances were found at the phylum and genus level, but differed among the three intestinal sites and between males and females. Correlation analysis confirmed that, of the taxonomically classifiable bacteria, Lactobacillus (5% relative abundance) and two Lactobacillus crispatus-OTUs in feces were indicative for high RFI in females (P < 0.05). In males, Ruminococcus in cecal digesta (3.1% relative abundance) and Dorea in feces (<0.1% relative abundance) were best indicative for low RFI, whereas Acinetobacter in feces (<1.5% relative abundance) related to high RFI (P < 0.05). Predicted metabolic functions in feces of males confirmed compositional relationships as functions related to amino acid, fatty acid and vitamin metabolism correlated with low RFI, whereas an increasing abundance of bacterial signaling and interaction (i.e. cellular antigens) genes correlated with high RFI (P < 0.05). In conclusion, RFI-associated bacterial profiles could be identified across different geographical locations. Results indicated that consortia of low-abundance taxa in the ileum, ceca and feces may play a role for FE in chickens, whereby only bacterial FE-associations found in ileal and cecal digesta may serve as useful targets for dietary strategies.

Highlights

  • Chicken’s intestinal microbiota are an important “metabolic organ” which plays a vital role in feed digestibility, nutrient absorption and immune competence [1]

  • The residual feed intake (RFI) values and total FI (TFI) of chickens within the same RFI rank were similar between geographical locations (Table 1)

  • total BW gain (TBWG) was equal for low and high RFI ranks, but it was lower in chickens from L2 who gained about 350 to 400 g less compared to chickens from L1 (P < 0.001)

Read more

Summary

Introduction

Chicken’s intestinal microbiota are an important “metabolic organ” which plays a vital role in feed digestibility, nutrient absorption and immune competence [1]. The high hygiene levels in modern commercial hatcheries have an unwanted side effect of causing highly variable bacterial colonization of chicken’s intestine [9]. This may be one reason for the inconsistent findings for cecal and fecal microbial profiles associated with good FE among studies [2,5,7,8] and the batch-to-batch variability within one study [7]. Bacteria associated with good FE, should be detectable across different chicken batches within the same rearing environment, and across multiple production settings, irrespective of the origin of the chickens and dietary effects. Previous research mainly focused on male chickens [2,5,7] and adult hens [8],whereas FE-related bacterial profiles were hardly investigated simultaneously in broiler chickens of both sexes

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.