Abstract

Human intestinal flora comprises thousands of bacterial species. Growth and composition of intestinal microbiota is dependent on various parameters, including immune mechanisms, dietary factors and intestinal motility. Patients with spinal cord injury (SCI) frequently display neurogenic bowel dysfunction due to the absence of central nervous system control over the gastrointestinal system. Considering the bowel dysfunction and altered colonic transit time in patients with SCI, we hypothesized the presence of a significant change in the composition of their gut microbiome. The objective of this study was to characterize the gut microbiota in adult SCI patients with different types of bowel dysfunction. We tested our hypothesis on 30 SCI patients (15 upper motor neuron [UMN] bowel syndrome, 15 lower motor neuron [LMN] bowel syndrome) and 10 healthy controls using the 16S rRNA sequencing. Gut microbial patterns were sampled from feces. Independent of study groups, gut microbiota of the participants were dominated by Blautia, Bifidobacterium, Faecalibacterium and Ruminococcus. When we compared all study groups, Roseburia, Pseudobutyrivibrio, Dialister, Marvinbryantia and Megamonas appeared as the genera that were statistically different between groups. In comparison to the healthy group, total bacterial counts of Pseudobutyrivibrio, Dialister and Megamonas genera were significantly lower in UMN bowel dysfunction group. The total bacterial count of Marvinbryantia genus was significantly lower in UMN bowel dysfunction group when compared to the LMN group. Total bacterial counts of Roseburia, Pseudobutyrivibrio and Megamonas genera were significantly lower in LMN bowel dysfunction group when compared to healthy groups. Our results demonstrate for the first time that butyrate-producing members are specifically reduced in SCI patients when compared to healthy subjects. The results of this study would be of interest since to our knowledge, microbiome-associated studies targeting SCI patients are non-existent and the results might help explain possible implications of gut microbiome in SCI.

Highlights

  • Human intestinal tract is colonized by thousands of different genera of bacterial species whose number and genetic content exceed that of the host by a factor of ten and 150-fold, respectively [1]

  • Neuron (UMN) bowel syndrome group whereas 15 patients with cauda equina syndrome were included in the lower motor neuron (LMN) bowel syndrome group (Fig 1)

  • The total bacterial count of Marvinbryantia genus was significantly lower in upper motor neuron (UMN) bowel dysfunction group (p = 0.021, Tukey’s HSD test) (Fig 2E) when compared to the LMN group. These results suggest that Pseudobutyrivibrio, a butyrate, lactic acid and formic acid producer [14] and Bacteroides members Dialister and Megamonas that are involved in interactions with the intestine [15] are significantly reduced in UMN bowel dysfunction group

Read more

Summary

Introduction

Human intestinal tract is colonized by thousands of different genera of bacterial species whose number and genetic content exceed that of the host by a factor of ten and 150-fold, respectively [1] These commensal microorganisms and their metabolites have substantial effects on the host, modulating the functions of the immune system, [2], the endocrine system, the enteric nervous system [3] and the central nervous system [4]. Stool propulsion and reflex mechanisms are preserved due to intact neuronal circuitry between the colon and the spinal cord, the intestinal transit time has been shown to be reduced. These patients often represent with constipation and fecal retention [9]. There is a high risk for incontinence due to atonic sphincters [11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.