Abstract

Changes in the metabolic profile within the intestine of lenok (Brachymystax lenok) when challenged to acute and lethal heat stress (HS) are studied using no-target HPLC-MS/MS metabonomic analysis. A total of 51 differentially expressed metabolites (VIP > 1, P < 0.05) were identified in response to HS, and 34 occurred in the positive ion mode and 17 in negative ion mode, respectively. After heat stress, changes in metabolites related to glycolysis (i.e., alpha-D-glucose, stachyose, and L-lactate) were identified. The metabolites (acetyl carnitine, palmitoylcarnitine, carnitine, and erucic acid) related to fatty acid β-oxidation accumulated significantly, and many amino acids (L-tryptophan, D-proline, L-leucine, L-phenylalanine, L-aspartate, L-tyrosine, L-methionine, L-histidine, and L-glutamine) were significantly decreased in HS-treated lenok. The mitochondrial β-oxidation pathway might be inhibited, while severe heat stress might activate the anaerobic glycolysis and catabolism of amino acid for energy expenditure. Oxidative damage in HS-treated lenok was indicated by the decreased glycerophospholipid metabolites (i.e., glycerophosphocholine, 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine, 1-palmitoyl-sn-glycero-3-phosphocholine, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1, 2-dioleoyl-sn-glycero-3-phosphatidylcholine) and the increased oxylipin production (12-HETE and 9R, 10S-EpOME). The minor oxidative pathways (omega-oxidation and peroxisomal beta-oxidation) were likely to be induced in HS-treated lenok.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call