Abstract

Glucagon-like peptide-2 (GLP-2) stimulates small intestinal growth through induction of intestinal epithelial proliferation. To examine the physiology of GLP-2-induced bowel, mice were treated with GLP-2 (2.5 micrograms) or vehicle for 10 days. Small intestinal weight increased to 136 +/- 2% of controls in GLP-2-treated mice, in parallel with 1.4 +/- 0.1- and 1.9 +/- 0.5-fold increments in duodenal RNA and protein content, respectively (P < 0.05-0.001). Similarly, the activities of duodenal maltase, sucrase, lactase, glutamyl transpeptidase, and dipeptidyl-peptidase IV (215 +/- 28% of controls; P < 0.001) were increased by GLP-2. Oral or duodenal administration of glucose or maltose did not reveal any differences in the ability of GLP-2-treated mice to absorb these nutrients, possibly because of decreases in expression of the glucose transporters sodium-dependent glucose transporter-1 (SGLT-1) and GLUT-2. In contrast, absorption of leucine plus triolein was increased after duodenal administration in GLP-2-treated mice (P < 0.01-0.001). Finally, GLP-2 did not alter other markers of intestinal or pancreatic gene expression, including levels of mRNA transcripts for ornithine decarboxylase, multidrug resistance gene, amylase, proglucagon, proinsulin, and prosomatostatin. Thus induction of intestinal growth by GLP-2 in wild-type mice results in a normal-to-increased capacity for nutrient digestion and absorption in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.