Abstract

Liver fibrosis is associated with angiogenesis and leads to portal hypertension. Certain antibiotics reduce complications of liver failure in humans, however, the effects of antibiotics on the pathologic alterations of the disease are not fully understood. The aim of this study was to test whether the non-absorbable antibiotic rifaximin could attenuate fibrosis progression and portal hypertension in vivo, and explore potential mechanisms in vitro. The effect of rifaximin on portal pressure, fibrosis, and angiogenesis was examined in wild type and Toll-like receptor 4 (TLR4) mutant mice after bile duct ligation (BDL). In vitro studies were carried out to evaluate the effect of the bacterial product and TLR agonist lipopolysaccharide (LPS) on paracrine interactions between hepatic stellate cells (HSC) and liver endothelial cells (LEC) that lead to fibrosis and portal hypertension. Portal pressure, fibrosis, and angiogenesis were significantly lower in BDL mice receiving rifaximin compared to BDL mice receiving vehicle. Studies in TLR4 mutant mice confirmed that the effect of rifaximin was dependent on LPS/TLR4 pathway. Fibronectin (FN) was increased in the BDL liver and was reduced by rifaximin administration and thus, was explored further in vitro as a potential mediator of paracrine interactions of HSC and LEC. In vitro, LPS promoted FN production from HSC. Furthermore, HSC-derived FN promoted LEC migration and angiogenesis. These studies expand our understanding of the relationship of intestinal microbiota with fibrosis development by identifying FN as a TLR4 dependent mediator of the matrix and vascular changes that characterize cirrhosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.