Abstract

The gastrointestinal tract harbours a diverse bacterial community that contributes to health and disease. A number of studies have demonstrated that the gut microbiota plays a critical role in the metabolism of serotonin. Microbial-derived metabolites, such as bile acids and short-chain fatty acids, are reported to affect the production of serotonin which, in turn, directly or indirectly regulates gut motility. Enterochromaffin cells are important specialized endocrine cells found in the intestine, which is the major location of serotonin biosynthesis. The relationship between microbiota and gut motility are studied depended on microbial-derived metabolites and serotonin. Both bile acids and short-chain fatty acids can modulate serotonin metabolism in hosts by affecting key intermediates of the serotonin pathway. Thus, gut motility may be regulated through microbial modifications of host serotonin biosynthesis, which continues to be evaluated as a target for functional gastrointestinal disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.