Abstract
Studies have shown that compensatory adaptations in gastrointestinal oxalate transport can impact the amount of oxalate excreted by the kidney. Hyperoxaluria is a major risk factor in the formation of kidney stones, and oxalate is derived from both the diet and the liver metabolism of glyoxylate. Although the intestine generally absorbs oxalate from dietary sources and can contribute as much as 50% of urinary oxalate, enteric oxalate elimination plays a significant role when renal function is compromised. While the mechanistic basis for these changes in the direction of intestinal oxalate movements in chronic renal failure involves an upregulation of angiotensinII receptors in the large intestine, enteric secretion/excretion of oxalate can also occur by mechanisms that are independent of angiotensinII. Most notably, the commensal bacterium Oxalobacter sp. interacts with the host enterocyte and promotes the movement of oxalate from the blood into the lumen, resulting in the beneficial effect of significantly lowering urinary oxalate excretion. Changes in the passive permeability of the intestine, such as in steatorrhoea and following gastric bypass, also promote oxalate absorption and hyperoxaluria. In summary, this report highlights the two-way physiological signalling between the gut and the kidney, which may help to alleviate the consequences of certain kidney diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.