Abstract

Among the causes of the progression of intervertebral disc (IVD) degeneration (IDD) is the loss of nutrient intake to the IVD through the microcirculation disruption of the sub-endplate. Also, the vertebral body fracture intervenes in degenerating the adjacent IVD. This research aimed to create an animal model of IDD using these two strategies. 30 male Sprague-Dawley rats were split into 3 groups: a control group, a middle vertebral body injury (MI) associated with ethanol injection (MI+EtOH) group, and an MI associated with phosphate-buffered saline injection (MI+PBS) group. A vertebral body fracture with or without endplate injection of ethanol was generated by either drilling a hole in the center of a caudal rat vertebral body to form a fracture with an unabated endplate or drilling a hole in the center of a rat coccygeal vertebral body with endplate injection of ethanol to establish a vertebral body fracture with endplate damage. X-ray, macroscopic, histologic, and biochemical evaluations were utilized to assess IDD at weeks 3 and 6. According to X-ray findings, the MI+EtOH group demonstrated a significant decrease in intervertebral space height over time in comparison to the 2 other groups. The water content also was significantly decreased. Macroscopic and histological analysis demonstrated progressive degenerative changes in the IVD of the MI+EtOH group. The caudal vertebra fracture with ethanol injection is more likely to induce degeneration of adjacent IVD. This model effectively repreduced IDD, which may serve as a theoretical basis for future clinical intervention for IDD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call