Abstract

Postpasteurization contamination (PPC) with gram-negative bacteria adversely affects the quality and shelf-life of milk through the development of flavor, odor, texture, and visual defects. Through evaluation of milk quality at 4 large fluid milk processing facilities in the northeast United States, we examined the efficacy of 3 strategies designed to reduce the occurrence of PPC in fluid milk: (1) employee training (focusing on good manufacturing practices) alone and (2) with concurrent implementation of modified clean-in-place chemistry and (3) preventive maintenance (PM) focused on replacement of wearable rubber components. Despite increases in employee knowledge and self-reported behavior change, microbiological evaluation of fluid milk before and after interventions indicated that neither training alone nor training combined with modified clean-in-place interventions significantly decreased PPC. Furthermore, characterization of gram-negative bacterial isolates from milk suggested that specific bacterial taxonomic groups (notably, Pseudomonas sequence types) continued to contribute to PPC even after interventions and that no major changes in the composition of the spoilage-associated microbial populations occurred as a consequence of the interventions. More specifically, in 3 of 4 facilities, gram-negative bacteria with identical 16S rDNA sequence types were isolated on multiple occasions. Evaluation of a PM intervention showed that used rubber goods harbored PPC-associated bacteria and that PPC may have been less frequent following a PM intervention in which wearable rubber goods were replaced (reduction from 3/3 samples with PPC before to 1/3 samples after). Overall, our findings suggest that commonly used "broad stroke interventions" may have a limited effect on reducing PPC. Our case study also demonstrates the inherent complexities of identifying and successfully addressing sanitation problems in large and complex fluid milk processing facilities. For example, broad changes to sanitation practices without improvements in PM and sanitary equipment design may not always lead to reduced PPC. Our data also indicate that although short-term evaluations, such as pre- and post-tests for employee training, may suggest improvements after corrective and preventive actions, extensive microbial testing, ideally in combination with isolate characterization, may be necessary to evaluate return on investment of different interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.