Abstract
To observe the effect of exogenous serine or glycine on the synthesis of selenoprotein and endogenous serine and the expression of metabolic enzymes in hepatocytes cultured with high-selenium in vitro and its dose-response relationship. The experiment was divided into two parts, namely a inhibition experiment and a dose-response experiment, using L02 cells as the intervention target. In the inhibition experiment, the blank control group, high-Se(SeMet) group, serine intervention group and high-Se+serine intervention group were set up. Both SeMet and serine were given at a level of 0.05 μmol/L, and the blank control group was given the same volumes of saline. In the dose-response experiment, the concentration of SeMet was 0.05 μmol/L, and the intervention concentration gradients of serine or glycine were 0, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 and 500 μmol/L. The expression of phosphoglycerate dehydrogenase(PHGDH)、serine hydroxymethyltransferase 1(SHMT1)、methylenetetrahydrofolate reductase(MTHFR)、selenoprotein P(SELENOP) and glutathione peroxidase 1(GPX1)was detected by Western Blot(WB). (1)In the inhibition experiment, compared with the blank control group, the expression of selenium proteins(GPX1 and SELENOP) in L02 cells of the other three groups were significantly increased(P<0.05). Compared with the high expression of PHGDH in L02 cells of high-Se group, the expressions of PHGDH, SHMT1 and MTHFR in high-Se + serine group were significantly decreased(P<0.05). (2) In the dose-response experiment, the expression of PHGDH enzyme in L02 cells gradually decreased with the increase of the concentration of exogenous serine or glycine, showing an obvious dose-dependent effect. In contrast, none of the other metabolic enzymes(SHMT1 and MTHFR) showed similar trends in protein expression. The upregulated expression of PHGDH, the key enzyme in the de novo synthesis pathway of serine in hepatocytes cultured with high-selenium can be inhibited feedback by exogenous serine or endogenous serine transformed from exogenous glycine directly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.