Abstract

During cardiac pulmonary bypass (CPB), myocardial ischemia-reperfusion (I/R) induces heart glucose metabolism impairment. Our previous research showed that the decreased glucose utilization is due to decreased glucose transporter-4 (Glut-4) expression and translocation to myocyte surface membranes. This study further examined whether rosiglitazone, a synthetic agonist of peroxisome proliferator-activated receptor γ, could intervene glucose metabolism by regulating Glut-4 mRNA during I/R in dogs. Cardiac ischemia was induced by cardiopulmonary bypass for 30 or 120 min. Plasma insulin and glucose concentrations were measured at pre-bypass (control), aortic cross-clamp off (I/R) at 15, 45, and 75 min. The left ventricle biopsies were taken for the expression of Glut-4 mRNA by real-time RT-PCR. In dogs receiving 120 min ischemia, coronary arterial, venous glucose concentrations, plasma insulin levels, and insulin resistant index (IRI) were increased, but the expression of Glut-4 mRNA was decreased obviously at 15 min of reperfusion, and recovered gradually. On the other hand, these changes were relatively mild in dogs treated with rosiglitazone in cardioplegic solution and expression of Glut-4 mRNA was increased remarkably. It is concluded that the decrease in total amount of Glut-4 mRNA expression could be one of the important molecular mechanisms, which causes the myocardium insulin resistance. The longer the ischemia period, the decrease in amount of Glut-4 mRNA was more dramatic. Adding rosiglitazone into the cardioplegic solution during I/R can increase the amount of Glut-4 mRNA expression, mitigate the myocardium insulin resistance and improve the myocardium I/R injury during CPB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.