Abstract

Geminiviruses pose serious threat to many economically important crops such as mungbean, tomato, cotton, etc. To devise a specific antiviral strategy at the viral DNA replication level, a hammerhead ribozyme was directed against the mRNA of the replication initiator protein (Rep). Rep is the most important viral protein for the DNA replication of the Mungbean yellow mosaic India virus (MYMIV), a member of the Geminiviridae family. The ribozyme showed ∼33% cleavage activity on synthetic rep transcript within 1 h under in vitro conditions, whereas the mutant ribozyme, designed to lack the catalytic activity but target the same site, showed no cleavage. The in vivo efficiency of ribozyme was evaluated in Saccharomyces cerevisiae as it can act as a surrogate host for replication of the MYMIV-DNA and lacks RNAi machinery. In the presence of the ribozyme, growth of the yeast cells that are dependent on geminiviral replication was inhibited by 30% and cellular generation time was increased by 2 h. The RT-PCR analysis showed a maximum of about 50% reduction in the rep mRNA level in presence of the ribozyme compared to its noncatalytic mutant control. About 65% decrease in geminiviral DNA replication was observed due to the downregulation of replication initiator protein by the ribozyme. These results raise the possibility of engineering resistance to geminiviruses employing the ribozyme approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.