Abstract

Information diffusion in complex networks has become quite an active research topic. As an important part of this field, intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers. In particular, it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks. For this purpose, we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks. First, individual interactions are described by a modified activity-driven network (ADN) model. Then, we establish a novel node-based susceptible–infected–recovered–susceptible (SIRS) model to characterize the information diffusion dynamics. On these bases, three synergetic intervention strategies are formulated. Second, we derive the critical threshold of the controlled-SIRS system via stability analysis. Accordingly, we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget. Third, we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense, in which the optimal intervention inputs are obtained through optimal control theory and a forward–backward sweep algorithm. Finally, extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call