Abstract
Interval-valued data are observed as ranges instead of single values and frequently appear with advanced technologies in current data collection processes. Regression analysis of interval-valued data has been studied in the literature, but mostly focused on parametric linear regression models. In this paper, we study interval-valued data regression based on nonparametric additive models. By employing one of the current methods based on linear regression, we propose a nonparametric additive approach to properly analyze interval-valued data with a possibly nonlinear pattern. We demonstrate the proposed approach using a simulation study and a real data example, and also compare its performance with those of existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.