Abstract

We investigate the structure of intervals in the lattice of all closed quasiorders on a compact or discrete space. As a first step, we show that if the intervalI has no infinite chains then the underlying space may be assumed to be finite, and in particular,I must be finite, too. We compute several upper bounds for its size in terms of its heighth, which in turn can be computed easily by means of the least and the greatest element ofI. The cover degreec of the interval (i.e. the maximal number of atoms in a subinterval) is less than 4h. Moreover, ifc⩾4(n−1) thenI contains a Boolean subinterval of size 2 n , and ifI is geometric then it is already a finite Boolean lattice. While every finite distributive lattice is isomorphic to some interval of quasiorders, we show that a nondistributive finite interval of quasiorders is neither a vertical sum nor a horizontal sum of two lattices, with exception of the pentagon. Many further lattices are excluded from the class of intervals of quasiorders by the fact that no join-irreducible element of such an interval can have two incomparable join-irreducible complements. Up to isomorphism, we determine all quasiorder intervals with less than 9 elements and all quasiorder intervals with two complementary atoms or coatoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call