Abstract

The Class III (delocalized) intervalence radical anions of 1,4-dinitrobenzene, 2,6-dinitronaphthalene, 2,6-dinitroanthracene, 9,9-dimethyl-2,7-dinitrofluorene, 4,4'-dinitrobiphenyl, and 1,5-dinitronaphthalene show charge-transfer bands in their near-IR spectra. The dinitroaromatic radical anions have comparable but slightly larger electronic interactions (H(ab) values) through the same aromatic bridges as do the corresponding dianisylamino-substituted radical cations. H(ab) values range from 5410 cm(-)(1) (1,4- dinitrobenzene) to 3400 cm(-)(1) (9,9-dimethyl-2,7-dinitrofluorene), decreasing as the number of bonds between the nitro groups increases, except for the 1,5-dinitronaphthalene radical-anion, which has a coupling similar to that of 9,9-dimethyl-2,7-dinitrofluorene. All charge-transfer bands show vibrational fine structure. The vertical excitation energies (lambda(v)) were estimated from the vibrational components, obtained by simulation of the entire band. The large 2H(ab)/lambda(v) values confirm these radicals to be Class III delocalized mixed-valence species. Analysis using Cave and Newton's generalized Mulliken-Hush theory relating the transition dipole moment to the distance on the diabatic surfaces suggests that the electron-transfer distance on the diabatic surfaces, d(ab), is only 26-40% of the nitrogen-to-nitrogen distance, which implies that something may be wrong with our analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.