Abstract

This paper introduces a novel approach that combines symbolic data analysis with matrix theory through the concept of interval-valued random matrices. This framework is designed to address the complexities of real-world data, offering enhanced statistical modeling techniques particularly suited for large and complex datasets where traditional methods may be inadequate. We develop both frequentist and Bayesian methods for the statistical inference of interval-valued random matrices, providing a comprehensive analytical framework. We conduct extensive simulations to compare the performance of these methods, demonstrating that Bayesian estimators outperform maximum likelihood estimators under the Frobenius norm loss function. The practical utility of our approach is further illustrated through an application to climatology and temperature data, highlighting the advantages of interval-valued random matrices in real-world scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.