Abstract
An important application of gene expression data is to classify samples in a variety of diagnostic fields. However, high dimensionality and a small number of noisy samples pose significant challenges to existing classification methods. Focused on the problems of overfitting and sensitivity to noise of the dataset in the classification of microarray data, we propose an interval-valued analysis method based on a rough set technique to select discriminative genes and to use these genes to classify tissue samples of microarray data. We first select a small subset of genes based on interval-valued rough set by considering the preference-ordered domains of the gene expression data, and then classify test samples into certain classes with a term of similar degree. Experiments show that the proposed method is able to reach high prediction accuracies with a small number of selected genes and its performance is robust to noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.