Abstract

This manuscript describes the use of a hardware-in-the-loop simulation to simulate the control of a multivariable anesthesia system based on an interval type-2 fuzzy neural network (IT2FNN) controller. The IT2FNN controller consists of an interval type-2 fuzzy linguistic process as the antecedent part and an interval neural network as the consequent part. It has been proposed that the IT2FNN controller can be used for the control of a multivariable anesthesia system to minimize the effects of surgical stimulation and to overcome the uncertainty problem introduced by the large inter-individual variability of the patient parameters. The parameters of the IT2FNN controller were trained online using a back-propagation algorithm. Three experimental cases are presented. All of the experimental results show good performance for the proposed controller over a wide range of patient parameters. Additionally, the results show better performance than the type-1 fuzzy neural network (T1FNN) controller under the effect of surgical stimulation. The response of the proposed controller has a smaller settling time and a smaller overshoot compared with the T1FNN controller and the adaptive interval type-2 fuzzy logic controller (AIT2FLC). The values of the performance indices for the proposed controller are lower than those obtained for the T1FNN controller and the AIT2FLC. The IT2FNN controller is superior to the T1FNN controller for the handling of uncertain information due to the structure of type-2 fuzzy logic systems (FLSs), which are able to model and minimize the numerical and linguistic uncertainties associated with the inputs and outputs of the FLSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.