Abstract

Background: For adult multiple sclerosis (MS) patients, impaired temporal processing of simultaneity/successiveness has been frequently reported although interval timing has been investigated in neither adult nor pediatric MS patients. We aim to extend previous research in two ways. First, we focus on interval timing (instead of simultaneity/successiveness) and differentiate between sensory-automatic processing of intervals in the subsecond range and cognitive processing of intervals in the one-second range. Second, we investigate whether impaired temporal information processing would also be observable in pediatric MS patients' interval timing in the subsecond and one-second ranges.Methods: Participants were 22 pediatric MS patients and 22 healthy controls, matched for age, gender, and psychometric intelligence as measured by the Culture Fair Test 20-R. They completed two auditory interval-timing tasks with stimuli in the subsecond and one-second ranges, respectively, as well as a frequency discrimination task.Results: Pediatric MS patients showed impaired interval timing in the subsecond range compared to healthy controls with a mean difference of the difference limen (DL) of 6.3 ms, 95% CI [1.7, 10.9 ms] and an effect size of Cohen's d = 0.830. The two groups did not differ significantly in interval timing in the one-second range (mean difference of the DL = 26.9 ms, 95% CI [−14.2, 67.9 ms], Cohen's d = 0.399) or in frequency discrimination (mean difference of the DL = 0.4 Hz, 95% CI [−1.1, 1.9 Hz], Cohen's d = 0.158).Conclusion: The results indicate that, in particular, the sensory-automatic processing of intervals in the subsecond range but not the cognitive processing of longer intervals is impaired in pediatric MS patients. This differential pattern of results is unlikely to be explained by general deficits of auditory information processing. A tentative explanation, to be tested in future studies, points to subcortical deficits in pediatric MS patients, which might also underlie deficits in speech and visuomotor coordination typically reported in pediatric MS patients.

Highlights

  • Multiple sclerosis (MS) is an inflammatory neurological disease, which leads to demyelination and neuroaxonal injury of the central nervous system and, subsequently, to physical and cognitive impairments

  • An initial outlier detection revealed that discrimination thresholds in the interval timing task in the second range of one female MS patient and one female healthy control were more than three standard deviations above the mean of the respective group. These two participants were excluded from further analyses

  • Descriptive data as well as appropriate t-tests for age, IQ, depression, and fatigue are provided in Table 1 for the remaining 22 MS patients and 22 healthy controls of the final sample

Read more

Summary

Introduction

Multiple sclerosis (MS) is an inflammatory neurological disease, which leads to demyelination and neuroaxonal injury of the central nervous system and, subsequently, to physical and cognitive impairments. According to Charvet et al [3], one third of pediatric MS patients suffer from cognitive impairment already in the early phase of the disease. In line with this observation, children and adolescents with MS suffer from substantial brain volume loss already at the time of the first event [4]. For adult multiple sclerosis (MS) patients, impaired temporal processing of simultaneity/successiveness has been frequently reported interval timing has been investigated in neither adult nor pediatric MS patients. We investigate whether impaired temporal information processing would be observable in pediatric MS patients’ interval timing in the subsecond and one-second ranges

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.