Abstract

BackgroundIn Alzheimer’s disease (AD) diagnosis, a cerebrospinal fluid (CSF) biomarker panel is commonly interpreted with binary cutoff values. However, these values are not generic and do not reflect the disease continuum. We explored the use of interval-specific likelihood ratios (LRs) and probability-based models for AD using a CSF biomarker panel. MethodsCSF biomarker (Aβ1-42, tTau and pTau181) data for both a clinical discovery cohort of 241 patients (measured with INNOTEST) and a clinical validation cohort of 129 patients (measured with EUROIMMUN), both including AD and non-AD dementia/cognitive complaints were retrospectively retrieved in a single-center study. Interval-specific LRs for AD were calculated and validated for univariate and combined (Aβ1-42/tTau and pTau181) biomarkers, and a continuous bivariate probability-based model for AD, plotting Aβ1-42/tTau versus pTau181 was constructed and validated. ResultsLR for AD increased as individual CSF biomarker values deviated from normal. Interval-specific LRs of a combined biomarker model showed that once one biomarker became abnormal, LRs increased even further when another biomarker largely deviated from normal, as replicated in the validation cohort. A bivariate probability-based model predicted AD with a validated accuracy of 88% on a continuous scale. ConclusionsInterval-specific LRs in a combined biomarker model and prediction of AD using a continuous bivariate biomarker probability-based model, offer a more meaningful interpretation of CSF AD biomarkers on a (semi-)continuous scale with respect to the post-test probability of AD across different assays and cohorts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.