Abstract
A new graphically oriented local modeling procedure called interval partial least-squares ( iPLS) is presented for use on spectral data. The iPLS method is compared to full-spectrum partial least-squares and the variable selection methods principal variables (PV), forward stepwise selection (FSS), and recursively weighted regression (RWR). The methods are tested on a near-infrared (NIR) spectral data set recorded on 60 beer samples correlated to original extract concentration. The error of the full-spectrum correlation model between NIR and original extract concentration was reduced by a factor of 4 with the use of iPLS ( r = 0.998, and root mean square error of prediction equal to 0.17% plato), and the graphic output contributed to the interpretation of the chemical system under observation. The other methods tested gave a comparable reduction in the prediction error but suffered from the interpretation advantage of the graphic interface. The intervals chosen by iPLS cover both the variables found by FSS and all possible combinations as well as the variables found by PV and RWR, and iPLS is still able to utilize the first-order advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.