Abstract

AbstractWe provide a complete description of the presentations of the interval groups related to quasi‐Coxeter elements in finite Coxeter groups. In the simply laced cases, we show that each interval group is the quotient of the Artin group associated with the corresponding Carter diagram by the normal closure of a set of twisted cycle commutators, one for each 4‐cycle of the diagram. Our techniques also reprove an analogous result for the Artin groups of finite Coxeter groups, which are interval groups corresponding to Coxeter elements. We also analyse the situation in the non‐simply laced cases, where a new Garside structure is discovered. Furthermore, we obtain a complete classification of whether the interval group we consider is isomorphic or not to the related Artin group. Indeed, using methods of Tits, we prove that the interval groups of proper quasi‐Coxeter elements are not isomorphic to the Artin groups of the same type, in the case of when is even or in any of the exceptional cases. In Baumeister et al. (J. Algebra 629 (2023), 399–423), we show using different methods that this result holds for type for all .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.