Abstract
The uncertainty arising from item parameter estimation is often not negligible and must be accounted for when calculating latent variable (LV) scores in item response theory (IRT). It is particularly so when the calibration sample size is limited and/or the calibration IRT model is complex. In the current work, we treat two-stage IRT scoring as a predictive inference problem: The target of prediction is a random variable that follows the true posterior of the LV conditional on the response pattern being scored. Various Bayesian, fiducial, and frequentist prediction intervals of LV scores, which can be obtained from a simple yet generic Monte Carlo recipe, are evaluated and contrasted via simulations based on several measures of prediction quality. An empirical data example is also presented to illustrate the use of candidate methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.