Abstract
This paper is concerned with the interval estimation problem of the dynamic liquid level for sucker-rod pumping systems via dynamometer cards. Firstly, a surface dynamometer card-based dynamic liquid level model is established in terms of the operational mechanism of the pump and the dynamics of the rod strings. Then, an underdamped oscillation method and a boxplot-based denoising method are developed respectively to determine the damping coefficient in the dynamics of the rod strings and deal with the uncertainties in the dynamometer card. Based on these, a finite difference-based interval estimation strategy is proposed to determine dynamic liquid level via the surface dynamometer card. Finally, simulation results with the field measurements demonstrate the validity of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.