Abstract

This article investigates interval estimation for linear systems with time-invariant probabilistic uncertainty. A two-step interval estimation method, which consists of nominal observer design and estimation error bound analysis, is proposed based on polynomial chaos expansion (PCE) and zonotopic technique. To deal with time-invariant probabilistic uncertainty, the error dynamics is approximated via PCE, which leads to an expanded deterministic linear system. Then intervals of the expanded system and error system are analyzed by zonotopic technique. The interval estimation is achieved by combining nominal observer state and estimated error interval. In a case study, an experimental example and a simulation example show the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.