Abstract
The pseudogap metal phase of the hole-doped cuprate superconductors has two seemingly unrelated characteristics: a gap in the electronic spectrum in the "antinodal" region of the square lattice Brillouin zone and discrete broken symmetries. We present a SU(2) gauge theory of quantum fluctuations of magnetically ordered states which appear in a classical theory of square lattice antiferromagnets, in a spin-density wave mean field theory of the square lattice Hubbard model, and in a CP^{1} theory of spinons. This theory leads to metals with an antinodal gap and topological order which intertwines with the observed broken symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.