Abstract
It is known that the time until a birth and death process reaches a certain level is distributed as a sum of independent exponential random variables. Diaconis, Miclo and Swart gave a probabilistic proof of this fact by coupling the birth and death process with a pure birth process such that the two processes reach the given level at the same time. Their coupling is of a special type called intertwining of Markov processes. We apply this technique to couple the Wright-Fisher diffusion with reflection at 1/2 and a pure birth process. We show that in our coupling the time of absorption of the diffusion is a.s. equal to the time of explosion of the pure birth process. The coupling also allows us to interpret the diffusion as being initially reluctant to get absorbed, but later getting more and more compelled to get absorbed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.