Abstract

Protoplast fusions were performed between hypocotyl protoplasts of Brassica napus and mesophyll protoplasts of Thlaspi perfoliatum. The two species are members of the Lepidieae and Brassiceae tribes, respectively, in the family of Brassicaceae. Seeds of T. perfoliatum are rich in the fatty acid C24∶1 (nervonic acid), an oil valuable for technical purposes. In the search for renewable oils to replace the mineral oils, plant breeders have been trying to develop oil crops with a high content of long-chain fatty acids. After fusion of B. napus protoplasts with non-irradiated as well as irradiated protoplasts of T. perfoliatum selection was carried out by flow cytometry and cell sorting. Of the shoots regenerated from different calli 27 were verified as hybrids or partial hybrids using the isoenzyme phosphoglucose isomerase (PGI) as a marker. Another 6 plants were identified as partial hybrids using a T. perfoliatum-specific repetitive DNA sequence. Slot blot experiments were performed to estimate the copy number of the repetitive DNA sequence in the parental species and in the hybrids. In T. perfoliatum there were approximately 10(5) copies per haploid genome, and the range in the hybrids was 1-37% of the value in T. perfoliatum. When the nuclear DNA content of the regenerated shoots was analysed we found partial as well as symmetric hybrids. Even though the rooting and establishment of hybrid shoots in the greenhouse were difficult, resulting in the death of many plants, 19 plants were cultured to full maturity. Seeds obtained from 15 plants were analysed to determine whether they contained nervonic acid, and 5 of the hybrids were found to contain significantly greater amounts of nervonic acid than B. napus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call