Abstract
We analyze the energetics and internal conversion dynamics of singlet and triplet manifolds to identify the possible intersystem crossing pathways in odd-numbered [n]cycloparaphenylenes ([n]CPPs, n = 5, 7, and 9). Quantum wavepacket propagation calculations within the linear vibronic coupling framework suggest that both [5]- and [7]CPPs rapidly relax to S2 upon populating "bright" higher singlet excited states. The S2-S1 energy decreases with the increase in CPP size, and hence, [9]CPP exhibits a faster S2 → S1 internal conversion decay. Higher triplet states act as receiver states for the intersystem crossing happening either via S1 or S2. The wavepacket evolving on the receiver triplet state would decay to lower states via multiple conical intersections and reach T1. The estimated size-dependent fluorescence and emission energies are in good accord with the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.