Abstract
o-Nitrobenzyl (oNB) derivatives are widely used photolabile caged compounds in chemical and biological applications. The primary step in the photoinduced deprotection is an excited state intramolecular hydrogen transfer (ESIHT) leading to tautomerization of the oNB compound and subsequent release of the protecting group. The prototype molecule for studying such ESIHT is o-nitrotoluene (oNT), where hydrogen transfers from the methyl to the nitro group. Using the complete active space self-consistent field (CASSCF) method with second-order perturbative energy corrections (CASPT2), we have comprehensively investigated the photoisomerization and photo decay mechanisms in oNT. We have obtained the minimum energy crossing points (MECPs) between relevant electronic states and identified the singlet and triplet pathways. There is a barrierless path for oNT to relax to the lowest triplet state. In this T1 state, the ESIHT products are more stable than T1 oNT. Hydrogen-transfer occurs on the T1 state followed by relaxation to the ground state to give the isomerized product. A biradical intermediate proposed by previous studies is characterized to be the hydrogen-transferred T1 product. On the singlet pathway, in contrast to the triplet, the ground state tautomer is formed from the S1 oNT through a geometrically distant and energetically higher S1/S0 conical intersection. Although nonadiabatic dynamical studies are essential for determining branching ratios, our study, which considers the accessibility of different MECPs based on geometry and energy, and the magnitude of spin-orbit coupling at singlet-triplet MECPs, suggests that a significant fraction of the isomerization yield is due to the triplet channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.