Abstract
Radical constructivism is currently a major, if not the dominant, theoretical orientation in the mathematics education community, in relation to children's learning. There are, however, aspects of children's learning that are challenges to this perspective, and what appears to be “at least temporary states of intersubjectivity” (Cobb, Wood, & Yackel, 1991, p. 162) in the classroom is one such challenge. In this paper I discuss intersubjectivity and through it offer an examination of the limitations of the radical constructivist perspective. I suggest that the extension of radical constructivism toward a social constructivism, in an attempt to incorporate intersubjectivity, leads to an incoherent theory of learning. A comparison of Piaget's positioning of the individual in relation to social life with that of Vygotsky and his followers is offered, in support of the claim that radical constructivism does not offer enough as an explanation of children's learning of mathematics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.