Abstract

AbstractRecent interest in intersubband (IS) transitions in semiconductor heterostructures with large band offset has been fueled by attempts to extend the wavelength range of IS-based optical devices to the fiber-optics wavelength range around ~ 1.55 μm. GaN/AlGaN-based heterostructures are of particular interest due to their large effective electron mass and large longitudinal optical phonon energy. Both are essential to achieve ultrafast electron relaxation at large transition energies. IS absorption in GaN/AlGaN single and coupled double quantum wells (DQWs) has been measured. The samples were grown by molecular beam epitaxy on sapphire substrate and with a large (0.65 or 0.9) AlN-mole fraction in the barriers. Peak absorption wavelengths as short as 1.35 μm and 1.52 μm were measured for a symmetric DQW of 12 Å wide wells coupled by a 10 Å wide barrier, which also showed evidence of excited-state anti-crossing. As expected, asymmetric DQWs displayed no such anti-crossing, and the ground-state anti-crossing energies were found to be much smaller – as a result of the comparatively large effective electron mass – than the energy broadening of individual transitions. The asymmetric DQWs displayed peak absorption wavelengths between 1.5 and 2.9 μm. The electron relaxation time, attributed to longitudinal optical phonon scattering has been measured by pump-probe technique as 240 fs for a coupled DQW sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.