Abstract
The improved density-functional theory is employed to obtain the eigenstates of electrons in an asymmetric quantum well. On the basis of calculated eigenstates, the semiconductor Bloch equations are used to calculate the transient density matrix when a pulsed intersubband laser coupling is applied to the system. The new dynamics of the individual absorption peaks is analyzed for the first time by use of a self-consistent-field theory. Based on this, the time-averaged optical spectrum is calculated to show the coherent-transition-induced quantum interference in the system. The new phenomena of probe-field amplification is observed, and the threshold laser intensity for observing it is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.