Abstract
The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss recent additions to the current model and argue that the endonuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1 (XPF-ERCC1) has been heretofore misplaced. During nucleotide excision repair, XPF-ERCC1 makes a single-strand nick adjacent to the lesion. XPF-ERCC1 has been thought to play an analogous role in ICL repair. However, recent data has implicated XPF-ERCC1 in homologous recombination. We suggest that this role, rather than its function in nucleotide excision repair, defines its importance to ICL repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.