Abstract

DNA interstrand cross-links (ICL) can be induced both by natural products (e.g., psoralens with UVA) and by chemical agents, some of which are used in chemotherapy (e.g., Carboplatin and mitomycin C). Here, we report the formation of ICL by UV radiation in brominated DNA, but only for very specific conformations. The quantum yields for strand break and cross-link formation depend on the wavelength with a maximum near 280 nm. It is known that the photosensitization of DNA by bromodeoxyuridine (BrdUrd) results mainly from the electron affinity of bromine, leading to the irreversible formation of 2'-deoxyuridin-5-yl radicals (dUrd*) upon the addition of an electron from an adjacent adenosine. It is well documented that the photolytic loss of the bromine atom is greatly suppressed in single-stranded DNA versus that in double-stranded DNA. To study this behavior, we have used two models of BrdUrd-mediated sensitization: one consists of a DNA duplex containing a bulge, formed by five mismatched bases, including the BrdUrd, and the other consists of completely duplex DNA. UV irradiation induces much higher levels of single-strand breaks (ssb) in the completely duplex DNA at the BrdUrd site compared to the DNA with a bulge. However, in completely duplex DNA, ssb appear only in the brominated strand, whereas in the bulged duplex DNA, ssb occur on both strands. Most importantly, we also observe formation of interstrand cross-links in bulged duplex DNA in the BrdUrd region. Thus, we propose that UV irradiation of cells containing BrdUrd incorporated randomly into duplex DNA will create many ssb, whereas BrdUrd present in DNA bulges or open regions in double-stranded DNA (transcription bubbles, replication forks) will lead to potentially lethal damage in both strands in the form of ICL. These findings may help explain the potent clinical antiviral activity of IdUrd and BrdUrd (e.g., IdUrd is used to treat eye infections caused by the herpes virus) and suggest that ICL formation may be a very specific probe for identifying single-stranded regions in the DNA of living cells. In addition, this model system provides an excellent means of introducing ICL for studies on their repair and biological consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call