Abstract

Staphylococcus aureus is a successful pathogen in part because the bacterium can adapt rapidly to selective pressures imparted by the external environment. Horizontal gene transfer (HGT) plays an integral role in the evolution of bacterial genomes, and phage transduction is likely to be the most common and important HGT mechanism for S. aureus. Phage can transfer not only its own genome DNA but also host bacterial DNA with or without pathogenicity islands to other bacteria. Here, we demonstrate that the staphylococcal prophage ϕNM2 could transfer between strains Newman and NCTC8325/NCTC8325-4 by simulating a natural situation in laboratory without mitomycin C or ultra-violet light treatment. This transference may be caused by direct contact between Newman and NCTC8325/NCTC8325-4 instead of phage particles released in Newman culture’s supernatant. The rates of successful horizontal genetic transfer in recipients NCTC8325 and NCTC8325-4 were 2.1% and 1.8%, respectively. Prophage ϕNM2 was integrated with one direction at an intergenic region between rpmF and isdB in all 17 lysogenic isolates. Phage particles were spontaneously released from lysogenic strains again and had no noticeable influence on the growth of host cells. The results reported herein provide insight into how mobile genetic elements such as prophages can lead to the emergence of genetic diversity among S. aureus strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.