Abstract

BackgroundCytochrome P450 2A5 (Cyp2a5), a mouse enzyme orthologous of human CYP2A6, catalyzes a number of toxicologically important reactions, including the metabolism of nicotine, aflatoxin B1, and several other xeno- and endobiotics. Cyp2a5 expression is complex and not yet fully understood. We investigated inter-strain differences in the activity and mRNA expression of hepatic Cyp2a5. Cyp1a1/2 and Cyp2b9/10 activities were evaluated for comparative purposes. Data on the interstrain differences in the expression and activity of Cyp2a5 are important to select a suitable mouse model for studying CYP2A6-mediated metabolism.ResultsActivity of Cyp2a5 (coumarin 7-hydroxylase) was highest in DBA-2 and DBA-1, intermediate in B6D2F1 (hybrid) and low in the remaining strains (C57BL/6, C57BL/10, CBA, BALB/cAn, SW). Contrasting with the activity, background levels of Cyp2a4/5 mRNA did not differ between high- and low-activity murine strains. Phenobarbital (PB, 80 mg/kg body weight/day × 3 days, i.p.) increased Cyp2a5, Cyp1a1/2 (ethoxyresorufin-O-deethylase) and Cyp2b9/10 (bezyloxyresorufin-O-debenzylase) activities while only Cyp2a5 was enhanced by pyrazole (PYR, 100 mg/kg body weight/day × 3 days, i.p.). Inductions of Cyp2a5 activity by PYR and PB were accompanied by increases of Cyp2a4/5 mRNA. PYR and PB did not upregulate heme oxygenase-1 (hmox-1) mRNA expression in any strain, a finding that is apparently at odds with the notion that Cyp2a5 and hmox-1 inductions are coordinated events.ConclusionsSince background levels of Cyp2a4/5 gene transcripts of high-activity strains did not differ from those of low-activity mice, distinct constitutive activities did not result from different transcription rates and/or mRNA half-lives. Results therefore suggested that interstrain differences in constitutive activity of Cyp2a5 possibly arise from distinct translation efficiencies, protein half-lives and/or enzyme kinetics toward the substrate. Data from this study indicated that all tested strains are suitable models for studying toxicants that are substrates for human CYP2A6; DBA-2, DBA-1 and the hybrid B62DF1, however, have the advantage of presenting high constitutive activities of Cyp2a5.

Highlights

  • Cytochrome P450 2A5 (Cyp2a5), a mouse enzyme orthologous of human CYP2A6, catalyzes a number of toxicologically important reactions, including the metabolism of nicotine, aflatoxin B1, and several other xeno- and endobiotics

  • Interstrain differences in Cyp2a5 activity Results from this study showed that constitutive activity of coumarin 7-hydroxylase (COH) in the liver microsomal fraction markedly varied among mouse strains (P < 0.05, analysis of variance (ANOVA) and Dunnett’s post hoc test)

  • It was described that the half-life of Cyp2a5 mRNA in the liver of PYR-treated D2 mice was at least fourfold longer than that in untreated controls, an indication that increases in Cyp2a5 gene transcript levels were predominantly due to mRNA stabilization [30]

Read more

Summary

Introduction

Cytochrome P450 2A5 (Cyp2a5), a mouse enzyme orthologous of human CYP2A6, catalyzes a number of toxicologically important reactions, including the metabolism of nicotine, aflatoxin B1, and several other xeno- and endobiotics. Data on the interstrain differences in the expression and activity of Cyp2a5 are important to select a suitable mouse model for studying CYP2A6-mediated metabolism. Among all members of CYP2A subfamily, human CYP2A6 (and CYP2A13) and mouse Cyp2a5 are most similar regarding tissue distribution and substrate specificity. Both CYP2A6 and Cyp2a5 are expressed in the olfactory mucosa, other tissues of the respiratory tract, oesophagus and the liver.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call