Abstract

Interstitial ultrasound applicators can be a minimally invasive alternative for treating targets that are unresectable or are inaccessible by extracorporeal methods. Dual-mode transducers for ultrasound imaging and therapy were developed to address the constraints of a miniaturized applicator and real-time treatment monitoring. We propose an original treatment strategy that combines ultrasound imaging and therapy using a dual-mode transducer rotating at 8 revolutions per second. Real-time B-mode imaging was interrupted to emit high-intensity ultrasound over a selected therapy aperture. A full 360 degrees image was taken every 8th rotation to image the therapy aperture. Numerical simulations were performed to study the effect of rotation on tissue heating, and to study the effect of the treatment sequence on transducer temperature. With the time-averaged transducer surface intensity held at 12 W/cm(2) to maintain transducer temperature below 66 degrees C, higher field intensities and deeper lesions were produced by narrower therapy apertures. A prototype system was built and tested using in vitro samples of porcine liver. Lesions up to 8 mm were produced using a time-averaged transducer surface intensity of 12 W/cm(2) applied for a period of 240 s over a therapy aperture of 40 degrees. Apparent strain imaging of the therapy aperture improved the contrast between treated and spared tissues, which could not be differentiated on B-mode images. With appropriate limits on the transducer output, real-time imaging and deep thermal ablation are feasible and sustainable using a rotating dual-mode transducer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.