Abstract

The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was used to analyze DNA single-strand breaks (SSBs) and alkali-labile sites induced by exposure to the nitric oxide (NO) donors sodium nitroprusside (SNP) and 3-morpholinosydnomine hydrochloride (SIN-1) in the whole genome and in long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cells. The relative density of DNA damage generated in the ITRS by X-rays was similar to that induced in the genome overall, whereas it was 1.7 times higher when the alkylating agent MNNG was assayed. Nevertheless, after SNP or SIN-1 treatment, ITRSs proved to be 2.8 and 2.7 times relatively more damaged, respectively, than the whole genome. When the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was not active, as in XR-C1 mutant cells, the repair kinetics in the whole genome did not differ from that in the parental cell line with X-ray or SNP exposure. However, whereas the SSBs and alkali-labile sites induced in the ITRS by X-rays exhibited rejoining kinetics similar to that of the parental cell line, the damage induced by SNP was more slowly rejoined. This implies a role for DNA-PKcs in the repair of DNA damage induced by NO, especially in ITRSs. The results demonstrated intragenomic heterogeneity of NO-induced DNA damage and repair; there was a higher density of DNA damage in the ITRS blocks, possibly because of their guanine richness. This suggests that a parallel process may occur in the terminal telomeres, which has implications for premature aging and neoplastic development by chronic NO exposure in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.