Abstract

The electronic and vibrational features of the single- (I1N) and double- (I2N) nitrogen interstitial defects in diamond are investigated at the quantum mechanical level using a periodic supercell approach based on hybrid functionals constructed from all electron Gaussian basis sets within the Crystal code. The results are compared with those of the well characterized 100 split self-interstitial defect (I2C). The effect of defect concentration has been investigated using supercells with different size, containing 64 and 216 atoms. Band structure, formation energy, charge and spin density distributions of each defect are analyzed. Irrespective of the defect concentration, these defects show important features for both IR and Raman spectroscopies. Stretching modes of the two atoms involved in the defect are calculated to be around 1837, 1761 and 1897 cm-1 for the I1N, I2N and I2C case, respectively. Since they are well removed from the one-phonon mode of pristine diamond (1332 cm-1), they are, in principle, detectable from the experimental point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.