Abstract

The two-dimensional Wigner crystal (WC) occurs in the strongly interacting regime (r_{s}≫1) of the two-dimensional electron gas (2DEG). The magnetism of a pure WC is determined by tunneling processes that induce multispin ring-exchange interactions, resulting in fully polarized ferromagnetism for large enough r_{s}. Recently, Hossain etal. [Proc. Natl. Acad. Sci. U.S.A. 117, 32244 (2020)PNASA60027-842410.1073/pnas.2018248117] reported the occurrence of a fully polarized ferromagnetic insulator at r_{s}≳35 in an AlAs quantum well, but at temperatures orders of magnitude larger than the predicted exchange energies for the pure WC. Here, we analyze the large r_{s} dynamics of an interstitial defect in the WC, and show that it produces local ferromagnetism with much higher energy scales. Three hopping processes are dominant, which favor a large, fully polarized ferromagnetic polaron. Based on the above results, we speculate concerning the phenomenology of the magnetism near the metal-insulator transition of the 2DEG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call