Abstract

BackgroundRearrangements of unstable DNA sequences may alter the structural integrity or the copy number of dose-sensitive genes, resulting in copy number variations. They may lead more frequently to deletions, in addition to duplications and/or inversions, which are the underlying pathogenic mechanism of a group of conditions known as genomic disorders (or also contiguous gene syndromes). Interstitial deletions of the short arm of chromosome 1 are rare, and only about 30 patients have been reported. Their clinical features are variable, in respect of the extent of the deleted region. They include global developmental delay, central nervous system (CNS) malformations, craniosynostosis, dysmorphic face, ocular defects, cleft palate, urinary tract anomalies and hand/foot abnormalities.Case presentationHereby, we report on an Italian female newborn with craniosynostosis, facial dysmorphisms including bilateral microphthalmia and coloboma, cleft palate, and a severe global developmental and growth delay, associated to a 1p31.3p22.2 deletion of 20.7 Mb. This was inherited from the healthy mother, who was carrier of a smaller (2.6 Mb) deletion included within the centromeric region (1p22.3p22.2) of the same rearrangement, in addition to a translocation between chromosomes 1p and 4q. The deleted region of the proband contains about ninety genes. We focus on the genotype–phenotype correlations.ConclusionsThe results of the present study further confirm that microdeletions at 1p31.3 constitute a contiguous gene syndrome. It is hard to establish whether the critical rearrangement of such syndrome may involve the centromeric band p22.3p22.2, or more likely do not, also in light of the genomic profile of the healthy mother of our patient. Neonatologists and pediatricians should take into consideration 1p31 microdeletion in cases of developmental and growth delay associated to craniosynostosis, peculiar facial dysmorphisms, cleft palate and hand/foot abnormalities. The present report provides new data about 1p31 microdeletion syndrome, in view of a better characterization of its genomic and phenotypic profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.