Abstract

Some two decades ago, Hoyle and Wickramasinghe (1976) proposed that the physical conditions inside dense molecular clouds favour the formation of amino acids and complex organic polymers. There now exists both astronomical and laboratory evidence supporting this idea. Recent millimeter array observations have discovered the amino acid glycine (NH2CH2COOH) in the gas phase of the dense star-forming cloud Sagittarius B2. These observations would pose serious problems for present-day theories of molecule formation in space because it is unlikely that glycline can form by the gas-phase reaction schemes normally considered for dense cloud chemistry. Several laboratory experiments suggest a new paradigm in which amino acids and other large organic molecules are chemically manufactured inside the bulk interior of icy grain mantles photoprocessed by direct and scattered ultraviolet starlight. Frequent chemical explosions of the processed mantles would eject large fragments of organic dust into the ambient cloud. Large dust fragments break up into smaller ones by sputtering and ultimately by photodissociation of individual molecules. Hence, a sizeable column density (N≈ 1010−1015 cm-2) of amino acids would be present in the gaseous medium as a consequence of balancing the rate of supply from exploding mantles with the rate of molecule destruction. Exploding mantles can therefore solve the longstanding molecule desorption problem for interstellar dense cloud chemistry. A sizeable fraction of the organic dust population can survive destruction and seed primitive planetary systems throughout our galaxy with prebiological organic molecules needed for proteins and nucleic acids in living organisms. This possibility provides fresh grounds for a new version of the old panspermia hypothesis first introduced by Anaxagoras. It is shown that panspermia is more important than asteroid and cometary organic depositions onto primitive Earth. Furthermore, no appeal to Miller-Urey synthesis in a nonoxidizing atmosphere of primitive Earth is then needed to seed terrestrial life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call