Abstract

DNA sequences with homology to the major (A + T)-rich mouse satellite component were localized in CsCl gradients by hybridization with a labeled satellite cRNA probe. Although, as expected, most of the hybridization was to DNA in the satellite-rich shoulder, substantial radioactive cRNA hybridized with DNA from denser regions of the gradient. Further examination revealed that hybridization to main-band DNA was not due to physical trapping of satellite DNA in the gradient, and melting experiments argue that the associated radioactivity was due to true RNA/DNA hybridization. Nearest-neighbor analysis of hybridized [alpha-32P]CTP-labeled l-strand cRNA indicates that hybridization to main-band DNA is by the satellite cRNA and not a contaminant. Together, these data argue that mouse satellite-like sequences are interspersed within the main-band fraction of DNA. For the support of this contention, total mouse DNA, purified main-band DNA, and purified satellite DNA were digested with EcoRI, sedimented in a sucrose gradient, and hybridized with labeled satellite cRNA. Mouse satellite DNA is not cleaved with EcoRI, so that purified EcoRI-digested satellite DNA sediments as a high molecular weight component. When total mouse DNA is digested with EcoRI, the majority of satellite-like sequences remain as high molecular weight DNA; however, significant amounts of satellite-like sequences sediment with the bulk of the lower molecular weight digested DNA, lending further credence to the argument that satellite-like sequences are interspersed with main-band DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.